Complexes of categories with Abelian group structure

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gorenstein projective objects in Abelian categories

Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...

متن کامل

Abelian Categories

Abelian categories are the most general category in which one can develop homological algebra. The idea and the name “abelian category” were first introduced by MacLane [Mac50], but the modern axiomitisation and first substantial applications were given by Grothendieck in his famous Tohoku paper [Gro57]. This paper was motivated by the needs of algebraic geometry, where the category of sheaves ...

متن کامل

Expansions of abelian categories

Expansions of abelian categories are introduced. These are certain functors between abelian categories and provide a tool for induction/reduction arguments. Expansions arise naturally in the study of coherent sheaves on weighted projective lines; this is illustrated by various applications. © 2011 Elsevier B.V. All rights reserved.

متن کامل

Abelian categories and definable additive categories

2 The category of small abelian categories and exact functors 4 2.1 Categorical properties of ABEX . . . . . . . . . . . . . . . . . . . 5 2.2 Pullbacks in ABEX . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 ABEX is finitely accessible . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Abelian categories as schemes . . . . . . . . . . . . . . . . . . . . 16 2.4.1 The functor of point...

متن کامل

Relative Semi-abelian Categories

We introduce a relative semi-abelian category as a pair (C,E), where C is a pointed category with finite limits, and E is a class of normal epimorphisms in C satisfying certain conditions, stronger than those defining a relative homological category [2]. In the absolute case, i.e. when E is the class of all regular epimorphisms in C, the pair (C,E) is relative semi-abelian if and only if C is s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1983

ISSN: 0022-4049

DOI: 10.1016/0022-4049(83)90030-0